Science Fair Projects

Ruben's Tube

Abstract

The objective: The objective of my experiment was to observe the interactions of sound waves using a flammable gaseous medium. I calculated and determined through experimentation the frequencies that resonated in a Ruben's Tube, causing standing waves to be established.

Methods/Materials

I filled a 6-foot long and 3-inch diameter galvanized steel tube with propane gas using a propane torch valve. On one end of the tube a speaker emitted frequencies from a frequency generator program loaded on a laptop computer. A plastic stopper in the other end set the length of the Ruben's Tube. Gas coming out of one-sixteenth of an inch holes drilled one inch apart along the top of the tube became flames when lit. Fine-tuning the frequencies generated on the computer allowed me to use the antinodes (peaks) and nodes (valleys) in the flames to determine the frequencies that resonated in my tube.

Results

The resonating frequencies determined in my experiment closely matched the calculated frequencies. When the longitudinal sound waves traveled through the tube, bounced off the end and returned, I was able to observe the compressions and rarefactions of the waves by the effect of the pressure on the gas. I was able to see standing waves clearly and determined frequencies for the fifth through tenth harmonics.

Conclusions/Discussion

By using the scientific method and paying close attention to the many different variables that might have thrown off my results, I was able to experimentally confirm the resonating frequencies calculated for the tube. The knowledge gained in this experiment is useful in the design of musical instruments such as organ pipes.

This project is to calculate and measure resonate frequencies observed in standing waves created by the constructive and deconstructive interference of sound waves in a Ruben's Tube.

Science Fair Project done By Gabriel H. Burnworth

 

Related Projects : The Focalization of Sound, Specific Heat in Materials, Quantifying the Effect of Tungsten,Color vs. Heat Absorption, Wavelength Controlled Holographic Polarization, Swing, Pendulum, Swing, Creating Sound with Heat, How Do Various Nonwoven Medical Gowns Compare as Barriers Against UV Radiation, Chemiluminescence, Effect of Ammonia Gas on Copper Nanowire Sensors, Brass Instruments and Artificial Lips, How Accurate Is Parallax, Doppler Effect and the Fiber Gyroscope, Radioactive Attenuation and the Inverse Square Law, Effect of Color on the Characteristics of a Heat Barrier Material

 

<<Back To Topics Page........................................................................................>> Next Topic

 

 

Copyright © sciencefairprojects.co.in 2013 through 2015